

Deutsche Akkreditierungsstelle

Annex to the Accreditation Certificate D-K-15139-01-00 according to DIN EN ISO/IEC 17025:2018

Valid from: 07.03.2023 Date of issue: 07.03.2023

Holder of accreditation certificate:

NATEC Sensors Gesellschaft mit beschränkter Haftung

The calibration laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The calibration laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and confirm generally with the principles of DIN EN ISO 9001.

Calibrations at the locations:

Niels-Bohr-Straße 9-11, 85748 Garching Zeppelinstraße 15, 85748 Garching

Calibrations in the fields:

Mechanical Quantities

- Pressure
- **Fluid Quantities**
- Liquid flow rate

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Abbreviations used: see last page

Page 1 of 3 This document is a translation. The definitive version is the original German annex to the accreditation certificate.

Annex to the Accreditation Certificate D-K-15139-01-00

Permanent Laboratory Location Niels-Bohr-Straße 9-11, 85748 Garching

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Ra	ange		Measurement conditions / procedure	Expanded uncertainty of measurement	Remarks
Liquid flow rate DC voltage U (simulation of the signal of a flow sensor by means of a frequency generator) Measuring instruments with voltage output	0 V	to	60 V	Comparison measurement of the output signal of a frequency generator to the input signal of a voltmeter DIN IEC 60381-2:1980:06	0.3 %	Output value <i>U</i> corresponds to the flow values of the flow sensor
DC current / (simulation of the signal of a flow sensor by means of a frequency generator) Measuring instruments with current output	0 mA	to	52 mA	Comparison measurement of the output signal of a frequency generator to the input signal of an ammeter DIN IEC 60381-1:1985-11	0.2 %	Output value / corresponds to the flow values of the flow sensor
Frequency f (simulation of the signal of a flow sensor by means of a frequency generator) Measuring instruments with frequency output	0.1 Hz	to	10000 Hz	Comparison measurement of the output signal of a frequency generator to the input signal of the frequency counter	0.002 %	Output value f corresponds to the flow values of the flow sensor

Permanent Laboratory Location Zeppelinstraße 15, 85748 Garching

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	R	ange		Measurement condi- tions / procedure	Expanded uncertainty of measurement	Remarks
Liquid flow rate Volume flow rate dV/dt Measuring instruments with frequency or analog output	0.0005 L/min	to	800 L/min	Volumetric measurement (Piston Prover) DIN EN ISO 7278-1:1996-12 VA-014:2022-10	0.1 %	Medium: Liquids with a density of 770 kg/m ³ to 1,200 kg/m ³ and viscosity up to 10,000 mm ² /s
Mass flow rate dm / dt Measuring instruments with frequency or analog output	0.000385 kg/min	to	800 kg/min	Volumetric measurement (Piston Prover) DIN EN ISO 7278-1:1996-12 VA-014:2022-10	0.1 %	
Volume flow rate <i>dV / dt</i> Display devices of flowmeters	0 L/min	to	10000 L/min	Comparison measurement of the output signal of a frequency generator to display VA-014:2022-10	0.002 %	Calibration of volume flow rate or simulation of the relevant values of the input variable

Annex to the Accreditation Certificate D-K-15139-01-00

Permanent Laboratory Location Zeppelinstraße 15, 85748 Garching

Calibration and Measurement Capabilities (CMC) Measurement condi-Measurement quantity Range Expanded Remarks / Calibration item tions / procedure uncertainty of measurement DKD-R 6-1:2014 $2.6 \cdot 10^{-2} \cdot p_{abs} + 5.4$ mbar Pressure 1 bar Pressure medium: Oil Absolute pressure Principle of the 1.2 bar 11 bar $2.6 \cdot 10^{-2} \cdot p_{abs} + 5.4$ mbar to measurement: > 11 bar 36 bar $6.0 \cdot 10^{-4} \cdot p_{abs} + 5.6 \text{ mbar}$ to $p_{abs} = p_e + p_{amb}$ $5.0 \cdot 10^{-4} \cdot p_{abs}$ + 17 mbar > 36 bar 701 bar to pabs: Absolute pressure *pamb*: Atmospheric pressure pe: Gauge pressure The measurement uncertainty of the barometer must be considered Gauge pressure –0.9 bar 0 bar $1.3 \cdot 10^{-2} \cdot |p_e| + 1.2 \text{ mbar}$ Pressure medium: Gas to pe: Gauge pressure $2.6 \cdot 10^{-2} \cdot p_e + 5.4$ mbar Pressure medium: Oil 0 bar pe: Gauge pressure 10 bar $2.6 \cdot 10^{-2} \cdot p_e + 5.4$ mbar 0.2 bar to $6.0 \cdot 10^{-4} \cdot p_e + 5.6$ mbar > 10 bar to 35 bar > 35 bar to 700 bar $5.0 \cdot 10^{-4} \cdot p_e + 17$ mbar

Abbreviations used:

СМС	Calibration	and Measurement	Canabilities
	Cambration		Capabilities

DIN Deutsches Institut für Normung e.V.

- DKD-R Guideline of the German Calibration Service "Deutscher Kalibrierdienst" (DKD), published by Physikalisch-Technische Bundesanstalt
- VA internal calibration procedure of NATEC Sensors Gesellschaft mit beschränkter Haftung