

Deutsche Akkreditierungsstelle GmbH

Annex to the Accreditation Certificate D-PL-11278-01-00 according to DIN EN ISO/IEC 17025:2018

 Valid from:
 09.12.2020

 Date of issue:
 01.02.2021

Holder of certificate:

Salzgitter Mannesmann Forschung GmbH Standort Duisburg Ehinger Straße 200, 47259 Duisburg

Tests in the fields:

mechanic-technological testing of metallic materials; technological testing of metallic components; metallographic tests of steels; corrosion tests on various steels; optical spark emission spectrometry (OES) of steel-, iron- and nickel-based materials; testing of effectiveness of plastic coatings

Within the given testing field marked with *, the testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, the free choice of standard or equivalent testing methods. The listed testing methods are exemplary.

The testing laboratory maintains a current list of all testing methods within the flexible scope of accreditation.

Within the scope of accreditation marked with ***, the testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use standards or equivalent testing methods listed here with different issue dates.

The testing laboratory maintains a current list of all testing methods within the flexible scope of accreditation.

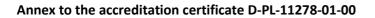
The management system requirements in DIN EN ISO/IEC 17025 are written in language relevant to operations of testing laboratories and operate generally in accordance with the principles of DIN EN ISO 9001.

The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accredited-bodies-dakks

Abbreviations used: see last page

Page 1 of 12

This document is a translation. The definitive version is the original German annex to the accreditation certificate.



1 Metallographic tests of steels ***

ASTM E 45-18a 2018	Standard Test Methods for Determining the Inclusion Content of Steel
ASTM E 112-13 2013	Standard Test Methods for Determining Average Grain Size
ASTM E 562-19 2019	Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count
ASTM E 1351-01 (2012) 2012	Standard Practice for Production and Evaluation of Field Metallographic Replicas
DIN 50602 1985-09	Metallographic examination - Microscopic examination of special steels using standard diagrams to assess the content of non-metallic inclusions (withdrawn standard)
DIN 54150 1977-08	Non-destructive testing - Impression methods for surface examination (Replica-technique) (withdrawn standard)
DIN EN 10247 2017-09	Micrographic examination of the non-metallic inclusion content of steels using standard pictures
DIN EN ISO 643 2013-05	Steels - Micrographic determination of the apparent grain size
DIN EN ISO 3887 2018-05	Steels - Determination of the depth of decarburization
ISO 3057 1998-03	Non-destructive testing - Metallographic replica techniques of surface examination
ISO 4967 2013-07	Steel - Determination of content of non-metallic inclusions - Micrographic method using standard diagrams
2 Analytical surface and	surface-imaging studies using electron microscopy
A-EDWW-007 2020-02	EDS analysis by means of the scanning electron microscope
A-EDWW-010 2020-02	EBSD analysis by means of the scanning electron microscope

A-EDWW-011 2020-08	Quantitative and qualitative micro-analysis by means of the electron probe microanalysis technique (EPMA)
A-EDWW-012 2020-02	EDS analysis by means of the electron probe microanalysis technique
3 Corrosion tests of un	alloyed and low-alloyed steels according standards ***
ASTM G 39-99 (2016) 2016	Standard Practice for Preparation and Use of Bent-Beam Stress- Corrosion Test Specimens
BS 8701 2016-06	Full ring ovalization test for determining the susceptibility to cracking of linepipe steels in sour service. Test method
DIN 50915 1993-09	Testing the resistance of unalloyed and low alloy steels to intergranular stress corrosion cracking by attack of nitrate medium - Welded and unwelded materials
DIN EN ISO 7539-1 2013-04	Corrosion of metals and alloys - Stress corrosion testing - Part 1: General guidance on testing procedures
DIN EN ISO 7539-2 1995-08	Corrosion of metals and alloys - Stress corrosion testing - Part 2: Prepa- ration and use of bent-beam specimen
DIN EN ISO 7539-3 1995-08	Corrosion of metals and alloys - Stress corrosion testing - Part 3: Prepa- ration and use of U-bend specimens
DIN EN ISO 7539-4 1995-08	Corrosion of metals and alloys - Stress corrosion testing - Part 4: Prepa- ration and use of uniaxially loaded tension specimens
DIN EN ISO 7539-5 1995-08	Corrosion of metals and alloys - Stress corrosion testing - Part 5: Prepa- ration and use of C-ring specimens
DIN EN ISO 7539-7 2018-05	Corrosion of metals and alloys - Stress corrosion testing - Part 7: Method for slow strain rate testing (here: without force, length and measurands based upon)

4 Corrosion tests of unalloyed and low-alloyed steels according other standards ***

EFC Publ. No. 16 Annex A 2009	Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H ₂ S-Containing Environments in Oil and Gas Production
NACE Standard TM0177 2016	Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H ₂ S Environments
NACE Standard TM0284 2016	Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking
NACE Standard TM0316 2016	Four-Point Bend Testing of Materials for Oil and Gas Applications

5 Corrosion test of high-alloyed steels ***

ASTM A 262-15 2015	Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
ASTM A 763-15 2015	Standard Practices for Detecting Susceptibility to Intergranular Attack in Ferritic Stainless Steels
ASTM G28-02(2015) 2015	Standard test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys
ASTM G 36-94(2018) 2018	Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution
ASTM G 46-94(2018) 2018	Standard Guide for Examination and Evaluation of Pitting Corrosion
ASTM G 48-11(2015) 2015	Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
ASTM G 78-15 2015	Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel- Base Stainless Alloys in Seawater and Other Chloride-Containing Aqueous Environments
DIN EN ISO 3651-1 1998-08	Determination of resistance to intergranular corrosion of stainless steels - Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels - Corrosion test in nitric acid medium by measurement of loss in mass (Huey test)

DIN EN ISO 3651-2	Determination of resistance to intergranular corrosion of stainless
1998-08	steels - Part 2: Ferritic, austenitic and ferritic-austenitic (duplex)
	stainless steels - Corrosion test in media containing sulfuric acid

6 Tests of plastics and coatings ***

DIN 30670 2012-04 + Corrigendum 1 2012-10	Polyethylen coatings of steel pipes and fittings - Requirements and testings (here: Annex A: Inspection of thickness Annex C: Cathodic disbondment (CD test) Annex D: Peel strength Annex E: Continuity (holiday detection) Annex G: Measuring the melt mass-flow rate (MFR) Annex H: Impact resistance and low temperature impact resistance Annex I: Indentation resistance Annex J: Specific electrical coating resistance Annex K: UV resistance Annex L: Thermal ageing resistance)
DIN 30678 2013-09	Polypropylene coatings on steel pipes and fittings - Requirements and testing (here: Annex A: Inspection of thickness Annex C: CD Test (cathodic disbondment) Annex D: Peel strength Annex E: Continuity (holiday detection) Annex G: Measuring the melt mass-flow rate (MFR) Annex H: Impact resistance and low temperature impact resistance Annex I: Indentation resistance Annex J: Specific electrical coating resistance Annex K: UV resistance Annex L: Thermal ageing resistance)
DIN EN ISO 1133-1 2012-03	Plastics - Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method
DIN EN ISO 4892-2 2013-06	Plastics - Methods of exposure to laboratory light sources - Part 2: Xenon-arc lamps
DIN EN ISO 6270-2 2018-04	Paints and varnishes - Determination of resistance to humidity - Part 2: Condensation (in-cabinet exposure with heated water reservoir)

DIN EN ISO 9227 2017-07	Corrosion tests in artificial atmospheres - Salt spray tests
DIN EN ISO 21809-1 2011-10	Petroleum and natural gas industries - External coatings for buried or submerged pipelines used in pipeline transportation systems - Part 1: Polyolefin coatings (3-layer PE and 3-layer PP) (withdrawn standard) (here: Annex A: Inspection of thickness Annex B: Holiday detection test Annex C: Peel strength test Annex C: Peel strength test Annex F: Inden-tation test Annex F: Inden-tation test Annex G: UV ageing and thermal ageing test Annex H: Cathodic disbondment test Annex I: Flexibility test Annex K: Total volatile/moisture content of the epoxy powder - Mass loss
DIN EN ISO 21809-2 2015-03	 Annex M: Hot water immersion test) Petroleum and natural gas industries - External coatings for buried or submerged pipelines used in pipeline transportation systems - Part 2: Single layer fusion-bonded epoxy coatings (here: Annex A.4: Dry adhesion test Annex A.5: Total volatile/moisture content of the epoxy powder - Mass loss Annex A.9: Cathodic disbondment of coatings for standard temperatures up to 95 °C A.13: Flexibility of the coating Annex A.14: Resistance to impact of the coating Annex A.15: Cathodic disbondment of strained coating Annex A.16 Hot-water adhesion of the coating)

ISO 21809-1 2018-10		Petroleum and natural gas industries - External coatings for buried of submerged pipelines used in pipeline transportation systems - Part 2 Polyolefin coatings (3-layer PE and 3-layer PP) (here: Annex A: Inspection of thickness Annex B: Holiday detection test Annex C: Peel strength test Annex C: Peel strength test Annex F: Indentation test Annex F: Indentation test Annex G: UV ageing and thermal ageing test Annex H: Cathodic disbondment test Annex I: Flexibility test Annex K: Total volatile/moisture content of the epoxy powder - Mass loss Annex M: Hot water immersion test)	1:
ISO 21809-2 2014-11		Petroleum and natural gas industries - External coatings for buried of submerged pipelines used in pipeline transportation systems - Part 2 Single layer fusion-bonded epoxy coatings (here: Annex A.4: Dry adhesion test Annex A.5: Total volatile/moisture content of the epoxy powder - Mo loss Annex A.9: Cathodic disbondment of coatings for standard tempera- tures up to 95 °C A.13: Flexibility of the coating Annex A.14: Resistance to impact of the coating Annex A.15: Cathodic disbondment of strained coating Annex A.16 Hot-water adhesion of the coating)	2: ass
7 Physica	al tests accordi	ng standards ***	
DIN EN ISO 369 2018-12	90	Welding and allied processes - Determination of hydrogen content i arc weld metal	n
8 Physica	al tests accordi	ng in-house and other procedures	
A-EDWW-005 2020-08		Determination of the chemical composition of steel and nickel-ba materials using spark emission spectroscopy for the determination of up to 30 elements (Restriction: <i>no nickel-base alloys</i>)	
AWS A4.4M 2001		Standard Procedures for determination of the Moisture content of Welding Fluxes and Welding Electrode Coverings	
Valid from: Date of issue:	09.12.2020 01.02.2021	- Translation -	[:] 12

9 Mechanical-technological testing, fracture mechanics ***

ASTM A 370-19e1	Standard Test Methods and Definitions for Mechanical Testing of Steel
2019	Products
DIN EN ISO 642 2000-01	Steel - Hardenability test by end quenching (Jominy test)

10 Tension test ***

ASTM E 8/E8M-16ae1 2016	Standard Test Methods for Tension Testing of Metallic Materials
ASTM E 21-17e1 2017	Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials
DIN EN ISO 6892-1 2020-06	Metallic materials - Tensile testing - Part 1: Method of test at room temperature (here: <i>Procedure B</i>)
DIN EN ISO 6892-2 2018-09	Metallic materials - Tensile testing - Part 2: Method of test at elevated temperature (here: <i>Procedure B</i>)

11 Compression test ***

DIN 50106	Testing of metallic materials - Compression test at room temperature
2016-11	

12 Pendulum impact test ***

ASTM E 23-18	Standard Test Methods for Notched Bar Impact Testing of Metallic
2018	Materials
DIN EN ISO 148-1	Metallic materials - Charpy pendulum impact test - Part 1: Test method
2017-05	

13 Drop weight tear test according standards ***

DIN EN 10274	Metallic materials - Drop weight tear test
1999-07	

14 Drop weight tear test according other procedures

API RP 5L3	Drop Weight Tear Test on Line Pipe
2014	

15 Hardness test ***

DIN EN ISO 6506-1 2015-02	Metallic materials - Brinell hardness test - Part 1: Test method (here: \varnothing 2,5 mm ball)
DIN EN ISO 6507-1 2018-07	Metallic materials - Vickers hardness test - Part 1: Test method
DIN EN ISO 6508-1 2016-12	Metallic materials - Rockwell hardness test - Part 1: Test method (here: <i>Scale C</i>)

16 Technological tests according standards ***

ASTM E 190-14 2014	Standard Test Method for Guided Bend Test for Ductility of Welds
DIN EN ISO 5173 2012-02	Destructive tests on welds in metallic materials - Bend tests
DIN EN ISO 7438 2016-07	Metallic materials - Bend test

17 Technological tests according other procedures

DNV-OS-F101	Submarine pipeline systems
2013-10 +	(Appendix B, Pre-straining and aging of materials, B1102 to B1110,
2007-10	Appendix B, Pre-straining and aging of materials, A1202 to A1210)

18 High-temperature strength test ***

DIN EN ISO 204	Metallic materials - Uniaxial creep testing in tension - Method of test
2019-04	

9 Competence area fracture mechanics * (Determination of fracture thoughness K _{IC} , of crack tip opening displacement CTOD and of experimental equivalent for J-integral at metallic materials by force and displacement measurements on the sample under quasistatic, monotonous increasing load)	
BS 7448-1 1991-12	Fracture mechanics toughness tests. Method for determination of KIc, critical CTOD and critical J values of metallic materials
BS 8571 2018-11	Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimens
DIN EN ISO 15653 2018-06	Metallic materials - Method of test for the determination of quasistatic fracture toughness of welds
ISO 12135 2016-11	Metallic materials - Unified method of test for the determination of quasistatic fracture toughness
20 Pressure vessel	tests according standards ***
DIN EN 12245 2012-03	Transportable gas cylinders - Fully wrapped composite cylinders
DIN EN ISO 9809-1 2020-02	Gas cylinders - Design, construction and testing of refillable seamless steel gas cylinders and tubes - Part 1: Quenched and tempered steel cylinders and tubes with tensile strength less than 1100 MPa
DIN EN ISO 9809-2 2020-02	Gas cylinders and tubes - Design, construction and testing of refillable seamless steel gas cylinders and tubes - Part 2: Quenched and tempered steel cylinders and tubes with tensile strength greater than or equal to 1100 MPa
DIN EN ISO 11439	Gas cylinders - High pressure cylinders for the on-board storage of

natural gas as a fuel for automotive vehicles

2013-09

ISO 11119-2 2012-07	Gas cylinders - Design, construction and testing of refillable composite gas cylinders and tubes - Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners (here: 8.5.1 Proof pressure test 8.5.2 Hydraulic volumetric expansion test 8.5.3 Liner burst test 8.5.4 Cylinder burst test 8.5.5 Ambient cycle test 8.5.7 Flaw test 8.5.8 Drop test)
21 Pressure vessel tests a	according other procedures
ECE 110 2002-02	Uniform provisions concerning the approval of I. Specific components of motor vehicles using compressed natural Gas (CNG) in their propulsion system II. Vehicles with regard to the installation of specific components of an approved type for the use of compressed natural gas (CNG) in their propulsion system Annex 3, Attachment A (here: A.6: Leak Before Break (LBB) performance test A.11: Hydrostatic test / Option 2: Proof pressure test A.12: Hydrostatic pressure burst test A.13: Ambient temperature pressure cycle test A.14: Acid environmental test

A.17: Composite flaw tolerance test)

Abbreviations used:

A-EDXX -XXX	In-house procedures, work instructions of the laboratories of the Salzgitter Mannesmann Forschung GmbH, Standort Duisburg
API	American Petroleum Institute
ASTM	American Society of Testing and Materials
AWS	American Welding Society
BS	British Standards
DIN	German Institute for Standardization
DNV	Det Norske Veritas
ECE	Economic Commission for Europe
EFC	European Federation of Corrosion

- EN European Standard
- IEC International Electrotechnical Commission
- ISO International Organisation for Standardisation
- NACE National Association of Corrosion Engineers
- SEP Steel-iron test sheet from the Association of German Ironworkers e.g.